Tag Archives: solid-state

Does EMC FASTCache work with Exchange?

Posted on by

Short Answer: Yes!

In my dealings with customers I’ve been requesting performance data from their storage systems whenever I can to see how different applications and environments react to new features. Today I’m going to give you some more real-world data, straight from a customer’s production EMC NS480.

I’ve pulled various stats out of Analyzer for this customer’s Exchange server, which has 3 mail databases totaling about 1TB of mail stored on the NS480 via FibreChannel connect. Since this customer is not extremely large (similar to most of our customers) they are using this NS480 for pretty much everything from VMWare, SQL, and Exchange, to NAS, web/app content, and Business Intelligence systems. There is about 30TB of block data and another 100TB of NAS data. FASTCache is enabled for all LUNs and Pools with just 183GB of usable FASTCache space (4 x 100GB SSDs). So in this environment, with a modest amount of FASTCache and very mixed workload, how does Exchange fare?

Let’s first take a look at the Exchange workload itself for a 24 hour period: (Note: There were no reads from the Exchange log LUNs to speak of so I left that out of this analysis.)

Total Read IOPS for the 3 databases: (the largest peak is a result of database maintenance jobs and the smaller peaks are due to backup jobs) Here it’s tough to see due to the maintenance and backup peaks, but production IO during the work day is about 200-400IOPS. By the way, a source-deduplicating incremental-forever backup technology, such as Avamar, could drastically reduce the IO Load and duration of the nightly backup

Total Write IOPS for the 3 databases: Obviously more changes to the database occurring during the work day.

Total Write IOPS for the 3 Log files: Log data is typically cached easily in the SP cache so FAST Cache isn’t terribly required here but I’m including it to show whether there is any value to using FASTCache with Exchange logs.

Now let’s look at the FASTCache hit ratios for this same set of data: (average of all 3 DBs)

First, the Read Activity: Here you can see that aside from the maintenance and backup jobs, FASTCache is servicing 70-90% of the Read IOPs. Keep in mind that a FASTCache miss could still be a Cache Hit if the data is in SP Cache. What’s interesting about this is that it looks like the nightly maintenance job is pushing the highest load.

And the Write Activity: The beauty of EMC’s FASTCache implementation being a read/write cache, the benefit extends beyond just read IO. Here you see that FASTCache is servicing 60-80% of the writes for these Exchange Databases. That’s a huge load off the backend disks.

And the Log Writes: Since Log writes are usually not a performance problem, I would say that FASTCache is not necessary here, and the average 30% hit ratio shown here is not great. If you wanted to spend the time to tune FASTCache a bit, you might consider disabling FASTCache for Log LUNs to devote the FASTCache capacity to more cache friendly workloads.

All in all you can see that for the database data, FASTCache is servicing a significant portion of the user generated workload, reducing the backend disk load and improving overall performance.

Hopefully this gives you a sense of what FASTCache could do for your Exchange environment, reducing backend disk workload for reads AND writes. I must reiterate, since an SP Cache hit is shown as a FASTCache miss, an 80% FASTCache hit ratio does not mean that 20% of the IOs are hitting disk. To illustrate this, I’ve graphed the sum of SP Cache Hits and FAST Cache Hits for a single database. You can see that in many cases we’re hitting a total of 100% cache hits.

Most interesting is the backup window where SP Cache is really handling a huge amount of the load. This is actually due to the Prefetch algorithms kicking in for the sequential read profile of a backup, something CX/VNX is very good at.

EMC CLARiiON and Celerra Updates – Defining Unified Storage

Posted on by

This past week, during EMC World 2010 in Boston, EMC made several announcements of updates to the Celerra and CLARiiON midrange platforms.  Some of the most impressive were new capabilities coming to CLARiiON FLARE in just a couple short months.  Major updates to Celerra DART will coincide with the FLARE updates and if you are already running CLARiiON CX4 hardware, or are evaluating CX4 (or Celerra), you will want to check these new features out.  They will be available to existing CX4(120,240,480,960)/NS(120,480,960) systems as part of a software update.

Here’s a list of key changes in FLARE 30:

  • Unified management for midrange storage platforms including CLARiiON and Celerra today, plus RecoverPoint, Replication Manager and more in the future.  This is a true single pane of glass for monitoring AND managing SAN, NAS, and data protection and it’s built in to the platform.  “EMC Unisphere” replaces Navisphere Manager and Celerra Manager and supports multiple storage systems simultaneously in a single window. (Video Demo)
  • Extremely large cache (ie: FASTCache) – Up to 2TB of additional read/write cache in CLARiiON using SSDs (Video Demo)
  • Block level Fully Automated Storage Tiering (ie: sub-LUN FAST) – Fully automated assignment of data across multiple disk types
  • Block Level Compression – Compress LUNs in the CLARiiON to reduce disk space requirements
  • VAAI Support – Integrate with vSphere ESX for improved performance

These features are in addition to existing features like:

  • Seamless and non-disruptive mobility of LUNs within a storage array – (via Virtual LUNs)
  • Non-Disruptive Data Migration – (via PowerPath Migration Enabler)
  • VMWare Aware Storage Management – (Navisphere, Unisphere, and vSphere Plugins giving complete visibility  and self-service provisioning for VMWare admins (Video Demo) AND Storage Admins
  • CIFS and NFS Compression – Compress production data on Celerra to reduce disk space requirements including VMs
  • Dynamic SAN path load balancing – (via PowerPath)
  • At-Rest-Encryption – (via PowerPath w/RSA)
  • SSD, FC, and SATA drives in the same system – Balance performance and capacity as needed for your application
  • Local and Remote replication with array level consistency – (SnapView, MirrorView, etc)
  • Hot-swap, Hot-Add, Hot-Upgrade IO Modules – Upgrade connectivity for FC, FCoE, and iSCSI with no downtime
  • Scale to 1.8PB of storage in a single system
  • Simultaneously provide FC, iSCSI, MPFS, NFS, and CIFS access

All together, this is an impressive list of features for a single platform. In fact, while many of EMC’s competitors have similar features, none of them have all of them in the same platform, or leverage them all simultaneously to gain efficiency.  When CLARiiON CX4 and Celerra NS are integrated and managed as a single Unified storage system with EMC Unisphere there is tremendous value as I’ll point out below…

Improve Performance easily…

  • Install a couple SSD drives into a CLARiiON and enable FASTCache to increase the array’s read/write cache from the industry competive 4GB-32GB up to 2TB of array based non-volatile Read AND Write cache available to ALL applications including NAS data hosted by the array.
  • Install PowerPath on Windows, Linux, Solaris, AND VMWare ESX hosts to automatically balance IO across all available paths to storage.  PowerPath detects latency and queuing occuring on each path and adjusts automatically, improving performance at the storage array AND for your hosts.  This is a huge benefit in VMWare environments especially.
  • When VMWare releases the updated version of vSphere ESX that supports VAAI, ESX will be able to leverage VAAI support in the CLARiiON to reduce the amount of IO required to do many tasks, improving performance across the environment again.
  • Upgrade from 1gbe iSCSI to 10gbe iSCSI, or from 4gbe FiberChannel to 8gbe FiberChannel, without a screwdriver or downtime.
  • Provide NAS shared file access with block-level performance for any application using EMC’s MPFS protocol.

Improve Efficiency and cost easily…

  • Create a single pool of storage containing some SSD, some FC, and some SATA drives, that automatically monitors and moves portions of data to the appropriate disk type to both improve performance AND decrease cost simultaneously.
  • Non-disruptively compress volumes and/or files with a single click to save 50% of your disk space in many cases.
  • Convert traditional LUNs to more efficient Thin-LUNs non-disruptively using PowerPath Migration Enabler, saving more disk space.

Increase and Manage Capacity easily…

  • Add additional storage non-disruptively with SSD, FC, and SATA drives in any mix up to 1.8PB of raw storage in a single CLARiiON CX4.
  • Using FASTCache, iSCSI, FC, and FCoE connectivity simultaneously does not reduce total capacity of the system.
  • Expanding LUNs, RAID Groups, and Storage Pools is non-disruptive.
  • Migrating LUNs between RAID groups and/or Storage Pools is non-disruptive using built-in CLARiiON LUN Migration, as is migrating data to a different storage array (using PowerPath Migration Enabler)!
  • Balancing workload between storage processors is non-disruptive and at individual LUN granularity.

Protect your data easily…

  • Snapshot, Clone, and Replicate any of the data to anywhere with built in array tools that can maintain complete data consistency across a single, or multiple applications without installing software.
  • Maintain application consistency for Exchange, SQL, Oracle, SAP, and much more, even within VMWare VMs, while replicating to anywhere with a single pane-of-glass.
  • Encrypt sensitive data seamlessly using PowerPath Encryption w/RSA.

Maintain Flexibility…

  • While you can do all of these things quickly and simply, you still have the flexibility to create traditional RAID sets using RAID 0, 1, 5, 6, and 10 where you need highly predicable performance, or tune read and write cache at the array and LUN level for specific workloads.  Do you want read/write snapshots? How about full copy clones on completely separate disks for workload isolation and failure protection? What about the ability to rollback data to different points in time using snapshots without deleting any other snapshots?  EMC Storage arrays have been able to do this for a long time and that hasn’t changed.

There are few manufacturers aside from EMC that can provide all of these capabilities, let alone provide them within a single platform.  That’s the definition of simple, efficient, Unified Storage in my opinion.