Tag Archives: efd

Does EMC FASTCache work with Exchange?

Posted on by

Short Answer: Yes!

In my dealings with customers I’ve been requesting performance data from their storage systems whenever I can to see how different applications and environments react to new features. Today I’m going to give you some more real-world data, straight from a customer’s production EMC NS480.

I’ve pulled various stats out of Analyzer for this customer’s Exchange server, which has 3 mail databases totaling about 1TB of mail stored on the NS480 via FibreChannel connect. Since this customer is not extremely large (similar to most of our customers) they are using this NS480 for pretty much everything from VMWare, SQL, and Exchange, to NAS, web/app content, and Business Intelligence systems. There is about 30TB of block data and another 100TB of NAS data. FASTCache is enabled for all LUNs and Pools with just 183GB of usable FASTCache space (4 x 100GB SSDs). So in this environment, with a modest amount of FASTCache and very mixed workload, how does Exchange fare?

Let’s first take a look at the Exchange workload itself for a 24 hour period: (Note: There were no reads from the Exchange log LUNs to speak of so I left that out of this analysis.)

Total Read IOPS for the 3 databases: (the largest peak is a result of database maintenance jobs and the smaller peaks are due to backup jobs) Here it’s tough to see due to the maintenance and backup peaks, but production IO during the work day is about 200-400IOPS. By the way, a source-deduplicating incremental-forever backup technology, such as Avamar, could drastically reduce the IO Load and duration of the nightly backup

Total Write IOPS for the 3 databases: Obviously more changes to the database occurring during the work day.

Total Write IOPS for the 3 Log files: Log data is typically cached easily in the SP cache so FAST Cache isn’t terribly required here but I’m including it to show whether there is any value to using FASTCache with Exchange logs.

Now let’s look at the FASTCache hit ratios for this same set of data: (average of all 3 DBs)

First, the Read Activity: Here you can see that aside from the maintenance and backup jobs, FASTCache is servicing 70-90% of the Read IOPs. Keep in mind that a FASTCache miss could still be a Cache Hit if the data is in SP Cache. What’s interesting about this is that it looks like the nightly maintenance job is pushing the highest load.

And the Write Activity: The beauty of EMC’s FASTCache implementation being a read/write cache, the benefit extends beyond just read IO. Here you see that FASTCache is servicing 60-80% of the writes for these Exchange Databases. That’s a huge load off the backend disks.

And the Log Writes: Since Log writes are usually not a performance problem, I would say that FASTCache is not necessary here, and the average 30% hit ratio shown here is not great. If you wanted to spend the time to tune FASTCache a bit, you might consider disabling FASTCache for Log LUNs to devote the FASTCache capacity to more cache friendly workloads.

All in all you can see that for the database data, FASTCache is servicing a significant portion of the user generated workload, reducing the backend disk load and improving overall performance.

Hopefully this gives you a sense of what FASTCache could do for your Exchange environment, reducing backend disk workload for reads AND writes. I must reiterate, since an SP Cache hit is shown as a FASTCache miss, an 80% FASTCache hit ratio does not mean that 20% of the IOs are hitting disk. To illustrate this, I’ve graphed the sum of SP Cache Hits and FAST Cache Hits for a single database. You can see that in many cases we’re hitting a total of 100% cache hits.

Most interesting is the backup window where SP Cache is really handling a huge amount of the load. This is actually due to the Prefetch algorithms kicking in for the sequential read profile of a backup, something CX/VNX is very good at.

Real World EMC FASTVP and FASTCache results!

Posted on by

I have a customer who just recently upgraded their EMC Celerra NS480 Unified Storage Array (based on Clariion CX4-480) to FLARE30 and enabled FASTCache across the array, as well as FASTVP automated tiering for a large amount of their block data.  Now that it’s been configured and the customer has performed a large amount of non-disruptive migrations of data from older RAID groups and VP pools into the newer FASTVP pool, including thick-to-thin conversions, I was able to get some performance data from their array and thought I’d share these results.

This is Real-World data

This is NOT some edge case where the customer’s workload is perfect for FASTCache and FASTVP and it’s also NOT a crazy configuration that would cost an arm and a leg.  This is a real production system running in a customer datacenter, with a few EFDs split between FASTCache and FASTVP and some SATA to augment capacity in the pool for their existing FC based LUNS.  These are REAL results that show how FASTVP has distributed the IO workload across all available disks and how a relatively small amount of FASTCache is absorbing a decent percentage of the total array workload.

This NS480 array has nearly 480 drives in total and has approximately 28TB of block data (I only counted consumed data on the thin LUNs) and about 100TB of NAS data.  Out of the 28TB of block LUNs, 20TB is in Virtual Pools, 14TB of which is in a single FASTVP Pool.  This array supports the customers’ ERP application, entire VMWare environment, SQL databases, and NAS shares simultaneously.

In this case FASTCache has been configured with just 183GB of usable capacity (4 x 100GB EFD disks) for the entire storage array (128TB of data) and is enabled for all LUNs and Pools.  The graphs here are from a 4 hour window of time after the very FIRST FASTVP re-allocation completed using only about 1 days’ worth of statistics.  Subsequent re-allocations in the FASTVP pool will tune the array even more.

FASTCache

First, let’s take a look at the array as a whole, here you can see that the array is processing approximately ~10,000 IOPS through the entire interval.

FASTCache is handling about 25% of the entire workload with just 4 disks.  I didn’t graph it here but the total array IO Response time through this window is averaging 2.5 ms.  The pools and RAID Groups on this array are almost all RAID5 and the read/write ratio averages 60/40 which is a bit write heavy for RAID5 environments, generally speaking.

If you’ve done any reading about EMC FASTCache, you probably know that it is a read/write cache.  Let’s take a look at the write load of the array and see how much of that write load FASTCache is handling.  In the following graph you can see that out of the ~10,000 total IOPS, the array is averaging about 2500-3500 write IOPS with FASTCache handling about 1500 of that total.

That means FASTCache is reducing the back-end writes to disk by about 50% on this system.  On the NS480/CX4-480, FASTCache can be configured with up to 800GB usable capacity, so this array could see higher overall performance if needed by augmenting FASTCache further.  Installing and upgrading FASTCache is non-disruptive so you can start with a small amount and upgrade later if needed.

FASTVP and FASTCache Together

Next, we’ll drill down to the FASTVP pool which contains 190 total disks (5 x EFD, 170 x FC, and 15 x SATA).  There is no maximum number of drives in a Virtual Pool on FLARE30 so this pool could easily be much larger if desired.  I’ve graphed the IOPS-per-tier as well as the FASTCache IOPS associated with just this pool in a stacked graph to give an idea of total throughput for the pool as well as the individual tiers.

The pool is servicing between 5,000 and 8,000 IOPS on average which is about half of the total array workload.  In case you didn’t already know, FASTVP and FASTCache work together to make sure that data is not duplicated in EFDs.  If data has been promoted to the EFD tier in a pool, it will not be promoted to FASTCache, and vise-versa.  As a result of this intelligence, FASTCache acceleration is additive to an EFD-enabled FASTVP pool.   Here you can see that the EFD tier and FASTCache combined are servicing about 25-40% of the total workload, the FC tier another 40-50%, and the SATA tier services the remaining IOPS.  Keep in mind that FASTCache is accelerating IO for other Pools and RAID Group LUNs in addition to this one, so it’s not dedicated to just this pool (although that is configurable.)

FASTVP IO Distribution

Lastly, to illustrate FASTVP’s effect on IO distribution at the physical disk layer, I’ve broken down IOPS-per-spindle-per-tier for this pool as well.  You can see that the FC disks are servicing relatively low IO and have plenty of head room available while the EFD disks, also not being stretched to their limits, are servicing vastly more IOPS per spindle, as expected.  The other thing you may have noticed here is that the EFDs are seeing the majority of the workload’s volatility, while the FC and SATA disks have a pretty flat workload over time.  This illustrates that FASTVP has placed the more bursty workloads on EFD where they can be serviced more effectively.

Hopefully you can see here how a very small amount of EFDs used with both FASTCache and FASTVP can relieve a significant portion of the workload from the rest of the disks.  FASTCache on this system adds up to only 0.14% of the total data set size and the EFD tier in the FASTVP pool only accounts for 2.6% of the total dataset in that pool.

What do you think of these results?  Have you added FASTCache and/or FASTVP to your array?  If so, what were your results?

EMC’s New VNX Unified Storage Systems

Posted on by

Today, EMC announced the new VNX and VNXe Unified Storage platforms that merge the functionality of, and replaces, EMC’s popular Clariion and Celerra products.   VNX is faster, more scalable, more efficient, more flexible, and easier to manage than the platforms it replaces.

Key differences between CX4/NS and VNX:

  • VNX replaces the 4gb FC-Arbitrated Loop backend busses with 6gb SAS point-to-point switched backend.
    • Fast and Reliable
  • VNX supports both 3.5” and 2.5” SAS drives in EFD (SSD), SAS, and NearLine-SAS varieties.
    • Flexible and Efficient
  • VNX has more cache, more front-end ports, and faster CPUs
    • Fast and Flexible
  • VNX systems can manage larger FASTCache configurations.
    • Fast and Efficient
  • VNX builds on the management simplicity enhancements started in EMC Unisphere on CX4/NS by adding application aware provisioning.
    • Simple and Efficient
  • VNX allows you to start with Block-only or NAS-only and upgrade to Unified later if desired, or start with Unified at deployment.
    • Cost Effective and Flexible
  • VNX will support advanced data services like deduplication in addition to FASTVP, FASTCache, Block QoS, Compression, and other features already available in Clariion and Celerra.
    • Flexible and Efficient

Just as with every manufacturer, newer products take advantage of the latest technologies (faster Intel processors and SAS connectivity in this case,) but that’s only part of the story with VNX.

Earlier, I mentioned Application Aware Provisioning has been added to Unisphere:

Prior to Application Aware Unisphere, if tasked with provisioning storage for Microsoft Exchange (for example), a storage admin would take the mailbox count and size requirements, use best practices and formulas from Microsoft for calculating required IOPS, and then map that data to the storage vendors’ best practices to determine the best disk layout (RAID Type, Size, Speed, quantity, etc).  After all that was done, then the actual provisioning of RAID Groups and/or LUNs would be done.

Now with Application Aware Unisphere, the storage admin simply enters the mailbox count and size requirements into Unisphere and the rest is done automatically.  EMC has embedded the best practices from Microsoft, VMWare, and EMC into Unisphere and created simple wizards for provisioning Hyper-V, VMWare, NAS, and Microsoft Exchange storage using those best practices.

Combine Unisphere’s Application Aware Provisioning with the already included vCenter integration, and support for VMWare VAAI and you have a broad set of integration from the application layer down through to the storage system for optimum performance, simple and efficient provisioning, and unparalleled visibility.  This is especially useful for small to medium sized businesses with small IT departments.

EMC has also simplified licensing of advanced features on VNX.  Rather than licensing individual software products based on the exact features you want, VNX has 5 simple Feature Packs plus a few bundle packs.  The packs are created based on the overall purpose rather than the feature.  ie: Local Protection vs. Snapshots or Clones

  • FAST Suite includes FASTVP, FASTCache, Block QoS, and Unisphere Analyzer
  • Security and Compliance Pack includes File Level Retention for File and Block Encryption
  • Local Protection Pack includes Snapshots for block and file, full copy clones, and RecoverPoint/CDP
  • Remote Protection Pack includes Synchronous and Asynchronous replication for block and file as well as RecoverPoint/CRR for near-CDP remote replication of block and.or file data.
  • Application Protection Pack extends the application integration by adding Replication Manager for application integrated replication and Data Protection Advisor for SLA based replication monitoring and reporting.

You can also get the Total Protection Pack which includes Local Protection, Remote Protection, and Application Protection packs at a discounted cost or the Total Efficiency Pack which includes all five.  That’s it, there are no other software options for VNX/VNXe.  Compression and Deduplication are included in the base unit as well as SANCopy.  You will also find that the cost of these packs is extremely compelling once you talk with your EMC rep or favorite VAR.

So there you have it — powerful, simple and efficient storage, unified management, extensive data protection features, simplified licensing, and class leading functionality (FASTVP, FASTCache, Integrated CDP, Quality of Service for Block, etc) in a single platform.  That’s Unified, That’s EMC VNX.

I didn’t have time to touch on VNXe here but there is even more cool stuff going on there.  You can read more about these products here..

EMC Unified: The benefit of having options

Posted on by

I’ve been having some fun discussions with one of my customers recently about how to tackle various application problems within the storage environment and it got me thinking about the value of having “options”.  This customer has an EMC Celerra Unified Storage Array that has Fiber Channel, iSCSI, NFS, and CIFS protocols enabled.  This single storage system supports VMWare, SQL, Web, Business Intelligence, and many custom applications.

The discussion was specifically centered on ensuring adequate storage performance for several different applications, each with a different type of workload…

1.)  Web Servers – Primarily VMs with general-purpose IO loads and low write ratios.

2.)  SQL Servers – Physical and Virtual machines with 30-40% write ratios and low latency requirements.

3.)  Custom Application  – A custom application database with 100% random read profiles running across 50 servers.

The EMC Unified solution:

EMC Storage already sports virtual provisioning in order to provision LUNs from large pools of disk to improve overall performance and reduce complexity.  In addition, QoS features in the array can be used to provide guaranteed levels of performance for specific datasets by specifying minimum and maximum bandwidth, response time, and IO requirements on a per-LUN basis.  This can help alleviate disk contention when many LUNs share the same disks, as in a virtual pool.  Enterprise Flash Drives (EFD) are also available for EMC Storage arrays to provide extremely high performance to applications that require it and they can coexist with FC and SATA drives in the same array.  Read and write cache can also be tuned at an array and LUN level to help with specific workloads.  With the updates to the EMC Unified Platform that I discussed previously, Sub-LUN FAST (auto tiering), and FAST Cache (EFD used as array cache) will be available to existing customers after a simple, non-disruptive, microcode upgrade, providing two new ways to tackle these issues.

So which feature should my customer use to address their 3 different applications?

Sub-LUN FAST (Fully Automated Storage Tiering)

Put all of the data into large Virtual Provisioning pools on the array, add a few EFD (SSD) and SATA disks to the mix and enable FAST to automatically move the blocks to the appropriate tier of storage.  Over time the workload would even out across the various tiers and performance would increase for all of the workloads with much fewer drives, saving on power, floor space, cooling, and potentially disk cost depending on the configuration.  This happens non-disruptively in the background.  Seems like a no-brainer right?

For this customer, FAST helps the web server VMs and the general-purpose SQL databases where the workload is predominately read and much of the same data is being accessed repeatedly (high locality of reference).   As long as the blocks being accessed most often are generally the same, day-to-day, automated tiering (FAST) is a great solution.  But what if the workload is much more random?  FAST would want to push all of the data into EFD, which generally wouldn’t be possible due to capacity requirements.  Okay, so tiering won’t solve all of their problems.  What about FAST Cache?

FAST Cache

Exponentially increase the size of the storage array’s read AND write cache with EFD (SSD) disks.  This would improve performance across the entire array for all “cache friendly” applications.

For this customer, increasing the size of write cache definitely helps performance for SQL (50% increase in TPM, 50% better response time as an example) but what about their custom database that is 100% random read?  Increasing the size of read cache will help get more data into cache and reduce the need to go to disk for reads, but the more random the data, the less useful cache is.   Okay, so very large caches won’t solve all of their problems.   EFDs must be the answer right?

EFD Disks

Forget SATA and FC disks; just use EFD for everything and it will be super fast!!   EFD has extremely high random read/write performance, low latency at high loads, and very high bandwidth.  You will even save money on power and cooling.

The total amount of data this customer is dealing with in these three applications alone exceeds 20TB.  To store that much in EFD would be cost prohibitive to say the least.  So, while EFD can solve all of this customer’s technical problems, they couldn’t afford to acquire enough EFD for the capacity requirements.

But wait, it’s not OR, it’s AND

The beauty of the EMC Unified solution is that you can use all of these technologies, together, on the same array, simultaneously.

In this customer’s case, we put FC and SATA into a virtual pool with FAST enabled and provision the web and general-purpose SQL servers from it.  FAST will eventually migrate the least used blocks to SATA, freeing the FC disks for the more demanding blocks.

Next, we extend the array cache using a couple EFDs and FAST Cache to help with random read, sequential pre-fetching, and bursty writes across the whole array.

Finally, for the custom 100% random read database, we dedicate a few EFDs to just that application, snapshot the DB and present copies to each server.  We disable read and write cache for the EFD backed volumes which leaves more cache available to the rest of the applications on the array, further improving total system performance.

Now, if and when the customer starts to see disk contention in the virtual pool that might affect performance of the general-purpose SQL databases, QoS can be tuned to ensure low response times on just the SQL volumes ensuring consistent performance.  If the disks become saturated to the point where QoS cannot maintain the response time or the other LUNs are suffering from load generated by SQL, any of the volumes can be migrated (non-disruptively) to a different virtual pool in the array to reduce disk contention.

Options

If you look at offerings from the various storage vendors, many promote large virtual pools, some also promote large caches of some kind, others promote block level tiering, and a few promote EFD (aka SSDs) to solve performance problems.  But, when you are consolidating multiple workloads into a single platform, you will discover that there are weaknesses in every one of those features and you are going to wish you had the option to use most or all of those features together.

You have that option on EMC Unified.

EMC CLARiiON and Celerra Updates – Defining Unified Storage

Posted on by

This past week, during EMC World 2010 in Boston, EMC made several announcements of updates to the Celerra and CLARiiON midrange platforms.  Some of the most impressive were new capabilities coming to CLARiiON FLARE in just a couple short months.  Major updates to Celerra DART will coincide with the FLARE updates and if you are already running CLARiiON CX4 hardware, or are evaluating CX4 (or Celerra), you will want to check these new features out.  They will be available to existing CX4(120,240,480,960)/NS(120,480,960) systems as part of a software update.

Here’s a list of key changes in FLARE 30:

  • Unified management for midrange storage platforms including CLARiiON and Celerra today, plus RecoverPoint, Replication Manager and more in the future.  This is a true single pane of glass for monitoring AND managing SAN, NAS, and data protection and it’s built in to the platform.  “EMC Unisphere” replaces Navisphere Manager and Celerra Manager and supports multiple storage systems simultaneously in a single window. (Video Demo)
  • Extremely large cache (ie: FASTCache) – Up to 2TB of additional read/write cache in CLARiiON using SSDs (Video Demo)
  • Block level Fully Automated Storage Tiering (ie: sub-LUN FAST) – Fully automated assignment of data across multiple disk types
  • Block Level Compression – Compress LUNs in the CLARiiON to reduce disk space requirements
  • VAAI Support – Integrate with vSphere ESX for improved performance

These features are in addition to existing features like:

  • Seamless and non-disruptive mobility of LUNs within a storage array – (via Virtual LUNs)
  • Non-Disruptive Data Migration – (via PowerPath Migration Enabler)
  • VMWare Aware Storage Management – (Navisphere, Unisphere, and vSphere Plugins giving complete visibility  and self-service provisioning for VMWare admins (Video Demo) AND Storage Admins
  • CIFS and NFS Compression – Compress production data on Celerra to reduce disk space requirements including VMs
  • Dynamic SAN path load balancing – (via PowerPath)
  • At-Rest-Encryption – (via PowerPath w/RSA)
  • SSD, FC, and SATA drives in the same system – Balance performance and capacity as needed for your application
  • Local and Remote replication with array level consistency – (SnapView, MirrorView, etc)
  • Hot-swap, Hot-Add, Hot-Upgrade IO Modules – Upgrade connectivity for FC, FCoE, and iSCSI with no downtime
  • Scale to 1.8PB of storage in a single system
  • Simultaneously provide FC, iSCSI, MPFS, NFS, and CIFS access

All together, this is an impressive list of features for a single platform. In fact, while many of EMC’s competitors have similar features, none of them have all of them in the same platform, or leverage them all simultaneously to gain efficiency.  When CLARiiON CX4 and Celerra NS are integrated and managed as a single Unified storage system with EMC Unisphere there is tremendous value as I’ll point out below…

Improve Performance easily…

  • Install a couple SSD drives into a CLARiiON and enable FASTCache to increase the array’s read/write cache from the industry competive 4GB-32GB up to 2TB of array based non-volatile Read AND Write cache available to ALL applications including NAS data hosted by the array.
  • Install PowerPath on Windows, Linux, Solaris, AND VMWare ESX hosts to automatically balance IO across all available paths to storage.  PowerPath detects latency and queuing occuring on each path and adjusts automatically, improving performance at the storage array AND for your hosts.  This is a huge benefit in VMWare environments especially.
  • When VMWare releases the updated version of vSphere ESX that supports VAAI, ESX will be able to leverage VAAI support in the CLARiiON to reduce the amount of IO required to do many tasks, improving performance across the environment again.
  • Upgrade from 1gbe iSCSI to 10gbe iSCSI, or from 4gbe FiberChannel to 8gbe FiberChannel, without a screwdriver or downtime.
  • Provide NAS shared file access with block-level performance for any application using EMC’s MPFS protocol.

Improve Efficiency and cost easily…

  • Create a single pool of storage containing some SSD, some FC, and some SATA drives, that automatically monitors and moves portions of data to the appropriate disk type to both improve performance AND decrease cost simultaneously.
  • Non-disruptively compress volumes and/or files with a single click to save 50% of your disk space in many cases.
  • Convert traditional LUNs to more efficient Thin-LUNs non-disruptively using PowerPath Migration Enabler, saving more disk space.

Increase and Manage Capacity easily…

  • Add additional storage non-disruptively with SSD, FC, and SATA drives in any mix up to 1.8PB of raw storage in a single CLARiiON CX4.
  • Using FASTCache, iSCSI, FC, and FCoE connectivity simultaneously does not reduce total capacity of the system.
  • Expanding LUNs, RAID Groups, and Storage Pools is non-disruptive.
  • Migrating LUNs between RAID groups and/or Storage Pools is non-disruptive using built-in CLARiiON LUN Migration, as is migrating data to a different storage array (using PowerPath Migration Enabler)!
  • Balancing workload between storage processors is non-disruptive and at individual LUN granularity.

Protect your data easily…

  • Snapshot, Clone, and Replicate any of the data to anywhere with built in array tools that can maintain complete data consistency across a single, or multiple applications without installing software.
  • Maintain application consistency for Exchange, SQL, Oracle, SAP, and much more, even within VMWare VMs, while replicating to anywhere with a single pane-of-glass.
  • Encrypt sensitive data seamlessly using PowerPath Encryption w/RSA.

Maintain Flexibility…

  • While you can do all of these things quickly and simply, you still have the flexibility to create traditional RAID sets using RAID 0, 1, 5, 6, and 10 where you need highly predicable performance, or tune read and write cache at the array and LUN level for specific workloads.  Do you want read/write snapshots? How about full copy clones on completely separate disks for workload isolation and failure protection? What about the ability to rollback data to different points in time using snapshots without deleting any other snapshots?  EMC Storage arrays have been able to do this for a long time and that hasn’t changed.

There are few manufacturers aside from EMC that can provide all of these capabilities, let alone provide them within a single platform.  That’s the definition of simple, efficient, Unified Storage in my opinion.