Tag Archives: thin

Coin Operated Spending Unleashed

Back on December 20th, 2013, I came across an ad in Facebook (yes I do click some of them) selling the concept of carrying a single payment card for every purpose (key to a slimmer wallet).  It was early in the campaign so the price was $50 instead of the full $100 that it was expected to cost later so I bought in to Coin’s crowd funding campaign. I paid the $50 for my Coin thinking I’d receive the card in Spring 2014.

Then in 2014 there was a huge kerfuffle over the news to backers that Coin wouldn’t be able to make their original shipping dates. They instituted a beta program for the earliest backers (only about 50 if I recall correctly) and later it was pretty clear they were struggling to ensure the product actually worked as advertised.

In the meantime Apple announced Apple Pay in September 2014 with the iPhone 6 and Apple Watch, which promised to provide a potentially even better experience than a multi-network card (ie: Coin) because it was technology embedded in something you carry anyway (your phone or watch). A friend of mine who also pre-ordered a Coin took advantage of the return option, getting his $50 back and used that to help cover the cost of his new Apple Watch which he uses to buy things at retail locations.

I’ll admit that I’m pretty fond of most of the Apple products. I grew up with PC’s and after spending most of my career managing PC-based computer networks I switched to Mac at home.  Today, our household consists of several iPad’s, a couple of MacBook Pros, an iMac or two, multiple iPhones, two AppleTV’s, and no less than four Airport Extreme routers. But I could not really justify purchasing an Apple Watch right away; it’s just a bit too expensive for a watch when I normally don’t wear a watch. And I couldn’t upgrade to an iPhone 6 any time soon because my mobile phone is actually provided by my employer. So Apple Pay was not available for me any time soon.   With no Apple Pay option, I let my Coin pre-order ride on.

Fast forward to Monday Sept 14, 2015. I opened the mailbox and I found my long overdue Coin. After all the delays they actually finished production and beta testing, and shipped the darn thing. In addition, they revamped the hardware in the process, specifically (and significantly I might add) adding NFC wireless. This means the Coin 2.0 card functions a lot more like Apple Pay because you can just hold it up to the reader rather than swipe it.

IMG_6886

Unboxing the device is sort of Apple-esce. The box is white and far more upscale than it needs to be for a glorified credit card. A credit card mag stripe reader for your mobile phone is included with the card so you can swipe your credit cards to the Coin app which then sync’s the data to the Coin.

IMG_6916Setting it up is very simple – in fact a bit too simple really because at first I sort of stared at the app looking for a way to pair my phone with the Coin and I couldn’t find it.   All the app wanted me to do was add my credit cards. Turns out it’s pretty much that simple, you swipe each card, giving each one a nickname, and then click Sync. Sync pairs up the Coin with your phone and loads your cards into it and it’s all set.

Another new feature in Coin 2.0 that was not originally expected was support for gift cards and membership cards.

After that I was all set to go out and spend Coin.  I’ve added two VISA cards, two AMEX cards (a personal and a corporate card), a debit card, and my Starbucks Gold Card. Time to test them out in the real world.

IMG_6887I spent the last two days with my Coin and my experience so far is, well, seamless.. and ultimately that’s a good thing.

Yesterday I headed out for lunch and used Coin to pay for parking with a kiosk, then to pay for the meal. The waitress didn’t even seem to notice, and it worked fine.   We then walked over for gelato and again, no notice from the girl who rang us up using my Coin as a VISA.

Today I went to lunch again, but this time it didn’t work. The waitress said it was the second one she’d seen and thought it was pretty cool, but alas I had to pull out my real VISA card. Then I decided to try using it at Starbucks as my Starbucks Gold Card (effectively a gift card).   I had to make sure the barista knew to treat it as the gift card but it worked just fine. And right after that I headed to the DOL to renew car tabs and no issues. The woman at the DOL was super-curious and wanted to know how to find one. So we’re 5 for 6 so far.

IMG_6915One nice thing is the map in the Coin app let’s you check to see if someone’s Coin was successful at a particular establishment, and you can tap on a place or search for one and report your own experience for others.

So far I like it, I also got my Wally Bifold slim wallet today so I look forward to a slightly more sleek cash and Coin carrying experience.

Auto-Tiering, Cloud Storage, and Risk-Free Thin Pools

Posted on by

Some customers are afraid of thin provisioning…

Practically every week I have discussions with customers about leveraging thin provisioning to reduce their storage costs and just as often the customer pushes back worried that some day, some number of applications, for some reason, will suddenly consume all of their allocated space in a short period of time and cause the storage pool to run out of space.  If this was to happen, every application using that storage pool will essentially experience an outage and resolving the problem requires allocating more space to the pool, migrating data, and/or deleting data, each of which would take precious time and/or money.  In my opinion, this fear is the primary gating factor to customers using thin provisioning.  Exacerbating the issue, most large organizations have a complex procurement process that forces them to buy storage many months in advance of needing it, further reducing the usefulness of thin provisioning.  The IT organization for one of my customers can only purchase new storage AFTER a business unit requests it and approved by senior management; and they batch those requests before approving a storage purchase.  This means that the business unit may have to wait months to get the storage they requested.

This same customer recently purchased a Symmetrix VMAX with FASTVP and will be leveraging sub-LUN tiering with SSD, FC, and SATA disks totaling over 600TB of usable capacity in this single system.  As we began design work for the storage array the topic of thin provisioning came up and the same fear of running out of space in the pool was voiced.  To prevent this, the customer fully allocates all LUNs in the pool up front which prevents oversubscription.  It’s an effective way to guarantee performance and availability but it means that any free space not used by application owners is locked up by the application server and not available to other applications.  If you take their entire environment into account with approximately 3PB of usable storage and NO thin provisioning, there is probably close to $1 million in storage not being used and not available for applications.  If you weigh the risk of an outage causing the loss of several million dollars per hour of revenue, the customer has decided the risks outweigh the potential savings.  I’ve seen this decision made time and again in various IT shops.

Sub-LUN Tiering pushes the costs for growth down

I previously blogged about using cloud storage for block storage in the form of Cirtas BlueJet and how it would not be to much of a stretch to add this functionality to sub-LUN tiering software like EMC’s FASTVP to leverage cloud storage as a block storage tier as shown in this diagram.

Let’s first assume the customer is already using FASTVP for automated sub-LUN tiering on a VMAX.  FASTVP is already identifying the hot and cold data and moving it to the appropriate tier, and as a result the lowest tier is likely seeing the least amount of IOPS per GB.  In a VMAX, each tier consists of one or more virtual provisioned pools, and as the amount of data stored on the array grows FASTVP will continually adjust, pushing the hot data up to higher tiers and cold data down to the lower tiers  The cold data is more likely to be old data as well so in many cases the data sort of ages down the tiers over time and its the old/least used portion of the data that grows.  Conceptually, the only tier you may have to expand is the lowest (ie: SATA) when you need more space.  This reduces the long term cost of data growth which is great.  But you still need to monitor the pools and expand them before they run out of space, or an outage may occur.  Most storage arrays have alerts and other methods to let you know that you will soon run out of space.

Risk-Free Thin Provisioning

What if the storage array had the ability automatically expand itself into a cloud storage provider, such as AT&T Synaptic, to prevent itself from running out of space?  Technically this is not much different from using the cloud as a tier all it’s own but I’m thinking about temporary use of a cloud provider versus long term.  The cloud provider becomes a buffer for times when the procurement process takes too long, or unexpected growth of data in the pool occurs.  With an automated tiering solution, this becomes relatively easy to do with fairly low impact on production performance.  In fact, I’d argue that you MUST have automated tiering to do this or the array wouldn’t have any method for determining what data it should move to the cloud.  Without that level of intelligence, you’d likely be moving hot data to the cloud which could heavily impact performance of the applications.

Once the customer is able to physically add storage to the pool to deal with the added data, the array would auto-adjust by bringing the data back from the cloud freeing up that space.  The cloud provider would only charge for the transfer of data in/out and the temporary use of space.  Storage reduction technologies like compression and de-duplication could be added to the cloud interface to improve performance for data stored in the cloud and reduce costs.  Zero detect and reclaim technologies could also be leveraged to keep LUNs thin over time as well as prevent the movement of zero’d blocks to the cloud.

Using cloud storage as a buffer for thin provisioning in this way could reduce the risk of using thin provisioning, increasing the utilization rate of the storage, and reducing the overall cost to store data.

What do you think?  Would you feel better about oversubscribing storage pools if you had a fully automated buffer, even if that buffer cost some amount of money in the event it was used?

Capacity vs Performance: Thin Provisioning-Reclaiming Free Space

Posted on by

A comment about HDS’s Zero Page Reclaim on one of my previous posts got me thinking about the effectiveness of thin provisioning in general.  In that previous post, I talked about the trade-offs between increased storage utilization through the use of thin-provisioning and the potential performance problems associated with it.

There are intrinsic benefits that come with the use of thin provisioning.  First, new storage can be provisioned for applications without nearly as much planning.  Next, application owners get what they want, while storage admins can show they are utilizing the storage systems effectively.  Also, rather than managing the growth of data in individual applications, storage admins are able to manage the growth of data across the enterprise as a whole.

Thin provisioning can also provide performance benefits…  For example, consider a set of virtual Windows servers running across several LUNs contained in the same RAID group.  Each Windows VM stores its OS files in the first few GB of their respective VMDK files.  Each VMDK file is stored in order in each LUN, with some free space at the end.  In essence, we have a whole bunch of OS sections separated by gaps of no data.  If all VMs were booting at approximately the same time, the disk heads would have to move continuously across the entire disk, increasing disk latency.

Now take the same disks, configured as a thin pool, and create the same LUNs (as thin LUNs) and the same VMs.  Because thin-provisioning in general only writes data to the physical disks as it’s being written by the application, starting from the beginning of the disk, all of those Windows VMs’ OS files will be placed at the beginning of the disks.  This increased data locality will reduce IO latency across all of the VMs.  The effect is probably minor, but reduced disk latency translates to possibly higher IOPS from the same set of physical disks.  And the only change is the use of thin-provisioning.

So back to HDS Zero Page Reclaim.  The biggest problem with thin provisioning is that it doesn’t stay thin for long.  Windows NTFS, for example, is particularly NOT thin-friendly since it favors previously untouched disk space for new writes rather than overwriting deleted files.  This activity eventually causes a thin-LUN to grow to it’s maximum size over time, even though the actual amount of data stored in the LUN may not change.  And Windows isn’t the only one with the problem.  This means that thin provisioning may make provisioning easier, or possibly improve IO latency, but it might not actually save you any money on disk.  This is where HDS’s Zero Page Reclaim can help.  Hitachi’s Dynamic Provisioning (with ZPR) can scan a LUN for sections where all the bytes are zero and reclaim that space for other thin LUNs.  This is particularly useful for converting thick LUNs into thin LUNs.  But, it can only see blocks of zeros, and so it won’t necessarily see space freed up by deleting files.  Hitachi’s own documentation points out that many file systems are not-thin friendly, and ZPR won’t help with long-term growth of thin LUNs caused by actively writing and then deleting data.

Although there are ways to script the writing of zeros to free space on a server so that ZPI can reclaim that space, you would need to run that script on all of your servers, requiring a unique tool for each operating system in your environment.  The script would also have to run periodically, since the file system will grow again afterward.

NetApp’s SnapDrive tool for Windows can scan an NTFS file system, detect deleted files, then report the associated blocks back to the Filer to be added back to the aggregate for use by other volumes/LUNs.  The Space Reclamation scan can be run as needed, and I believe it can be scheduled; but, it appears to be Windows only.  Again, this will have to be done periodically.

But what if you could solve the problem across most or all of your systems, regardless of operating system, regardless of application, with real-time reclamation?  And what if you could simultaneously solve other problems?  Enter Symantec’s Storage Foundation with Thin-Reclamation API.  Storage Foundation consists of VxFS, VxVM, DMP, and some other tools that together provide dynamic grow/shrink, snapshots, replication, thin-friendly volume usage, and dynamic SAN multipathing across multiple operating systems.  Storage Foundation’s Thin-Reclamation API is to thin-provisioning what OST is to Backup Deduplication.  Storage vendors can now add near-real-time zero page reclaim for customers that are willing to deploy VxFS/VxVM on their servers.  For EMC customers, DMP can replace PowerPath, thereby offsetting the cost.

As far as I know, 3PAR is the first and only storage vendor to write to Symantec’s thin-API, which means they now have the most dynamic, non-disruptive, zero-page-reclaim feature set on the market.  As a storage engineer myself, I have often wondered if VxVM/VxFS could make management of application data storage in our diverse environment easier and more dynamic.  Adding Thin-Reclamation to the mix makes it even more attractive.  I’d like to see more storage vendors follow 3PAR’s lead and write to Symantec’s API.  I’d also like to see Symantec open up both OST and the Thin-Reclamation API for others to use, but I doubt that will happen.

Expanding a Thin LUN on Clariion CX4

Posted on by

Do you have an EMC Clariion CX4 with Virtual Provisioning (thin provisioning)?  Have you tried to expand the host visible (ie: maximum) size of a thin-LUN and can’t figure out how?  Well you aren’t alone…  Despite extremely little information available from EMC to say one way or the other, I finally figured out that you actually can’t expand a thin lun yet.  This was a surprise to me, since I had just assumed that would be there.  Thin-LUNs are pretty much virtual LUNs, and as such, they don’t have any direct block mapping to a RAID group that has to be maintained.  And traditional LUNs can be expanded using MetaLUN striping or concatenation.  Due to this restriction the host visible size of a thin-LUN cannot be edited after the LUN has been created.

But there IS a workaround.  It’s not perfect but its all we have right now.  Using CLARiiON’s built-in LUN Migration technology you can expand a thin-LUN in two steps.

Step 1: Migrate the thin-LUN to a thick-LUN of the same maximum size.

Step 2: Migrate the thick-LUN to a new thin-LUN that was created with the new larger size you want.  After migration, the thin-LUN will consume disk space equivalent to the old thin-LUN’s maximum size, but will have a new, higher host maximum visible size.

Two Steps to expand a thin LUN

Two Steps to expand a thin LUN

This requires that you have a RAID group outside of your thin pools that has enough usable free space to fit the temporary thick-LUN, so it’s not a perfect solution.  You’d think that migrating the old thin-LUN directly into a new, larger thin-LUN would work, but to use the additional disk space after a LUN migration, you have to edit the LUN size which, again, can’t be done on thin-LUNs.  I haven’t actually tested this, but this is based on all of the documentation I could find from EMC on the topic.

I’m looking into other methods that might be better, but so far it seems that certain restrictions on SnapView Clones and SANCopy might preclude those from being used.  The ability to expand thin-LUNs will come in a later FLARE release for those that are willing to wait.

Clariion CX4 – New Features in Flare 29

EMC released FLARE 29 (04.29.000.5.001) for Clariion CX4 systems a few days ago.  The release of the CX4 hardware platform was a very significant upgrade for the Clariion series – moving to a 64bit operating system, implementing hot-add and hot-swap I/O modules, as well as multi-core CPUs for higher performance and scalability.  FLARE 28 was released to support the CX4 platform and introduced Virtual Provisioning (EMC’s name for thin provisioning) to the Clariion feature list.

According to the release notes FLARE 29 adds a couple of new features and builds on existing ones.  All of them will become available with the standard non-disruptive upgrade Clariion owners are accustomed to.

New Features in FLARE 29:

  • 2-port 10Gbps iSCSI IO modules are now available
  • The ability to hot swap IO modules for faster modules (ie: upgrade from 4gb FC to 8gb FC)
  • Idle SATA drives can now spin down to save power
  • iSCSI ports now support VLAN tagging
  • LUNs and MetaLUNs can now be shrunk if using new versions of Windows (ie: Windows 2008)

Additional Updates:

  • The maximum number of LUNs has been increased for all CX4 models (to 8192 for the CX4-960)
  • MirrorView now supports replicating to and/or from Thin provisioned LUNs
  • SANCopy now supports copying to and/or from Thin provisioned LUNs
  • The maximum number of MirrorView/Async sessions has increased to 256 and up to 64 consistency groups with up to 64 mirrors per group.  Up to 512 MirrorView/Sync sessions are supported on CX4-960 hardware.

The really big news here is with MirrorView.  When Virtual Provisioning was released in FLARE 28 on CX4 you could not use MirrorView with any thin LUNs, whether they were the source or destination.  This limited the use of thin LUNs to those applications and/or customers that don’t need or use array-based replication.  EMC’s RecoverPoint product did support thin LUNs but that is a separate, fairly expensive, solution.  The ability to replicate non-thin (fat) LUNs to thin LUNs could be really useful for maximizing the disk utilization at a DR location where performance isn’t a primary concern.

The added ability to upgrade I/O modules to faster versions while online is also very handy.  It means you can tackle problems like increasing iSCSI bandwidth or upgrading core infrastructure (ie: network and SAN switches) with little or no downtime on the storage system.  VLAN tagging with iSCSI can be useful for sharing a storage system between disparate server environments that need to be separated for security or performance reasons.

As a Clariion and MirrorView user myself, I look forward to taking advantage of the added thin provisioning support with our upcoming CX4-960.