Tag Archives: file

EMC’s New VNX Unified Storage Systems

Posted on by

Today, EMC announced the new VNX and VNXe Unified Storage platforms that merge the functionality of, and replaces, EMC’s popular Clariion and Celerra products.   VNX is faster, more scalable, more efficient, more flexible, and easier to manage than the platforms it replaces.

Key differences between CX4/NS and VNX:

  • VNX replaces the 4gb FC-Arbitrated Loop backend busses with 6gb SAS point-to-point switched backend.
    • Fast and Reliable
  • VNX supports both 3.5” and 2.5” SAS drives in EFD (SSD), SAS, and NearLine-SAS varieties.
    • Flexible and Efficient
  • VNX has more cache, more front-end ports, and faster CPUs
    • Fast and Flexible
  • VNX systems can manage larger FASTCache configurations.
    • Fast and Efficient
  • VNX builds on the management simplicity enhancements started in EMC Unisphere on CX4/NS by adding application aware provisioning.
    • Simple and Efficient
  • VNX allows you to start with Block-only or NAS-only and upgrade to Unified later if desired, or start with Unified at deployment.
    • Cost Effective and Flexible
  • VNX will support advanced data services like deduplication in addition to FASTVP, FASTCache, Block QoS, Compression, and other features already available in Clariion and Celerra.
    • Flexible and Efficient

Just as with every manufacturer, newer products take advantage of the latest technologies (faster Intel processors and SAS connectivity in this case,) but that’s only part of the story with VNX.

Earlier, I mentioned Application Aware Provisioning has been added to Unisphere:

Prior to Application Aware Unisphere, if tasked with provisioning storage for Microsoft Exchange (for example), a storage admin would take the mailbox count and size requirements, use best practices and formulas from Microsoft for calculating required IOPS, and then map that data to the storage vendors’ best practices to determine the best disk layout (RAID Type, Size, Speed, quantity, etc).  After all that was done, then the actual provisioning of RAID Groups and/or LUNs would be done.

Now with Application Aware Unisphere, the storage admin simply enters the mailbox count and size requirements into Unisphere and the rest is done automatically.  EMC has embedded the best practices from Microsoft, VMWare, and EMC into Unisphere and created simple wizards for provisioning Hyper-V, VMWare, NAS, and Microsoft Exchange storage using those best practices.

Combine Unisphere’s Application Aware Provisioning with the already included vCenter integration, and support for VMWare VAAI and you have a broad set of integration from the application layer down through to the storage system for optimum performance, simple and efficient provisioning, and unparalleled visibility.  This is especially useful for small to medium sized businesses with small IT departments.

EMC has also simplified licensing of advanced features on VNX.  Rather than licensing individual software products based on the exact features you want, VNX has 5 simple Feature Packs plus a few bundle packs.  The packs are created based on the overall purpose rather than the feature.  ie: Local Protection vs. Snapshots or Clones

  • FAST Suite includes FASTVP, FASTCache, Block QoS, and Unisphere Analyzer
  • Security and Compliance Pack includes File Level Retention for File and Block Encryption
  • Local Protection Pack includes Snapshots for block and file, full copy clones, and RecoverPoint/CDP
  • Remote Protection Pack includes Synchronous and Asynchronous replication for block and file as well as RecoverPoint/CRR for near-CDP remote replication of block and.or file data.
  • Application Protection Pack extends the application integration by adding Replication Manager for application integrated replication and Data Protection Advisor for SLA based replication monitoring and reporting.

You can also get the Total Protection Pack which includes Local Protection, Remote Protection, and Application Protection packs at a discounted cost or the Total Efficiency Pack which includes all five.  That’s it, there are no other software options for VNX/VNXe.  Compression and Deduplication are included in the base unit as well as SANCopy.  You will also find that the cost of these packs is extremely compelling once you talk with your EMC rep or favorite VAR.

So there you have it — powerful, simple and efficient storage, unified management, extensive data protection features, simplified licensing, and class leading functionality (FASTVP, FASTCache, Integrated CDP, Quality of Service for Block, etc) in a single platform.  That’s Unified, That’s EMC VNX.

I didn’t have time to touch on VNXe here but there is even more cool stuff going on there.  You can read more about these products here..

EMC, Isilon, and CSX possibilities..

Posted on by

As you’ve no doubt heard, EMC has completed the tender offer to acquire Isilon (www.isilon.com)  for a Cajillion dollars (actually ~$2 Billion) and some people are asking why.  From where I sit, there are many reasons why EMC would want a company like Isilon, ranging from it’s media-minded customer base, to the technical IP, like scale-out NAS, that sets Isilon apart from the rest.

This EMC Press Release, as well as this one, and Chucks Blog are some of the many places to find out more about the acquisition…

I was thinking a lot about that technology as I worked on a high-bandwidth NAS project with a customer recently.  Isilon’s primary product is an IP-based storage solution that uses commodity based hardware components, combined with their proprietary OneFS Operating System, to deliver scale-out NAS with super simple management and scalability.  A single Isilon OneFS based filesystem can scale to over 10PB across hundreds of nodes.  Isilon also provides various versions of hardware that can be intermixed to increase performance, capacity, or both depending on customer needs.  You don’t necessarily have to add disks to an Isilon cluster to increase performance.

When looking at EMC’s own product line, you’ll find that Atmos delivers similar scale-out clustering for object-based storage, while VMAX does a similar type of scaling for high-end block storage (FC, FCoE, and iSCSI), and Greenplum provides scale-out analytics as well.  Line up Isilon’s OneFS, EMC GreenPlum, EMC Atmos, and EMC VMAX, and we can now deliver massive scale-out storage for database, object, file, and block data.  With VPLEX and Atmos, EMC also delivers block and object storage federation across distance.

Isilon’s OneFS also has technologies that mirror EMC’s but are implemented in such a way as to leverage the Scale-Out NAS model.  Take FlexProtect, for example, which is Isilon’s data protection mechanism (similar to RAID) and allows admins to apply different protection schemes (N+1 ala RAID5, N+2 ala RAID6, N+3, and even N+4 redundancy) on individual files and directories.  SmartPools, which is policy based, automatically tiers data at a file level based on read/write activity across different protection types and physical nodes, similar to how FASTVP tiers data at a block level on EMC Unified and VMAX.  Both EMC and Isilon realize that all data is not equal.

Rather than just repackage OneFS with an EMC logo (which I’m sure we’ll do at first), I wonder what else can we do with Isilon’s IP…

A recent series of blog posts by Steve Todd (Information Playground) on the topic of a Common Software Execution Environment (See CSX Technology and The Benefits of Component Assembly) got me thinking about deeper integration and how CSX can accelerate that integration.

For example…

What if EMC Engineering took the portions of code from Isilon’s OneFS that handle client load-balancing, file-level automated tiering, and flexible protection and turned them into CSX components.  Those components could be dropped into Celerra and immediately add Scale-Out NAS to EMC’s existing Unified storage platforms.  Or, imagine those components running directly in VMAX engines, providing scale-out NAS simultaneously with scale-out SAN across multiple, massive scale storage systems.  Combine the load balancing code and FlexProtect from Isilon with FASTVP in EMC Clariion to provide scale-out SAN in a midrange platform.

We could also reverse the situation and use the compression component that is in Clariion and Celerra, plus federation technology in Atmos, both added to OneFS in order reduce the storage footprint and extend Scale-Out NAS to many sites over any distance.  Add a GreenPlum component and suddenly you have a massive analytics cluster that spans multiple sites for data where you need it, when you need it.

The possibilities here really are endless, it will be very interesting to see what happens over the next 12 to 24 months.

Disclaimer: Even though I am an EMC employee, I am in no way involved in the EMC/Isilon acquisition, have no knowledge of future plans and roadmaps with regard to EMC and Isilon, and am not privy to any non-public information about this topic.  I am merely expressing my own personal views on this topic.

Compression better than Dedup? NetApp Confirms!

Posted on by

The more I talk with customers, the more I find that the technical details of how something works is much less important than the business outcome it achieves.  When it comes to storage, most customers just want a device that will provide the capacity and performance they need, at a price they can afford–and it better not be too complicated.  Pretty much any vendor trying to sell something will attempt to make their solution fit your needs even if they really don’t have the right products.  It’s a fact of life, sell what you have.  Along these lines, there has been a lot of back and forth between vendors about dedup vs. compression technology and which one solves customer problems best.

After snapshots and thin provisioning, data reduction technology in storage arrays has become a big focus in storage efficiency lately; and there are two primary methods of data reduction — compression and deduplication.

While EMC has been marketing compression technology for block and file data in Celerra, Unified, and Clariion storage systems, NetApp has been marketing deduplication as the technology of choice for block and file storage savings.  But which one is the best choice?  The short answer is.. it depends.  Some data types benefit most from deduplication while others get better savings with compression.

Currently, EMC supports file compression on all EMC Celerra NS20, 40, 80, 120, 480, 960, VG2, and VG8 systems running DART 5.6.47.x+ and block compression on all CX4 based arrays running FLARE30.x+.  In all cases, compression is enabled on a volume/LUN level with a simple check box and processing can be paused, resumed, and disabled completely, uncompressing the data if desired.  Data is compressed out-of-band and has no impact on writes, with minimal overhead on reads.  Any or all LUN(s) and/or Filesystem(s) can be compressed if desired even if they existed prior to upgrading the array to newer code levels.

With the release of OnTap 8.0.1, NetApp has added support for in-line compression within their FAS arrays.  It is enabled per-FlexVol and as far as I have been able to determine, cannot be disabled later (I’m sure Vaughn or another NetApp representative will correct me if I’m wrong here.)  Compression requires 64-bit aggregates which are new in OnTap 8, so FlexVols that existed prior to an upgrade to 8.x cannot be compressed without a data migration which could be disruptive.  Since compression is inline, it creates overhead in the FAS controller and could impact performance of reads and writes to the data.

Vaughn Stewart, of NetApp, expertly blogged today about the new compression feature, including some of the caveats involved, and to me the most interesting part of the post was the following graphic he included showing the space savings of compression vs. dedup for various data types.

Image Credit: Vaughn Stewart, NetApp

The first thing that struck me was how much better compression performed over deduplication for all but one data type (Virtualization will usually fare well because in a typical environment there are many VMs with the same operating system files).  In fact, according to NetApp, deduplication achieves very little savings, if any, for the majority of the data types here.
 
The light green bar indicates savings with both dedupe AND compression enabled on the same dataset.  In 5 out of 9 cases, dedup adds ZERO savings over compression alone.  I can’t help but wonder why anyone would enable dedup on those data types if they already had compression, since both features use storage array CPU resources to find and compress or dedup data.  I am aware that in some cases, dedup can improve performance on NetApp systems due to dedup-aware cache, but I also believe that any performance gain is directly related to the amount of duplication in the data.  Using this chart, virtualization is really the only place where dedup seems particularly effective and hence the only place where real performance gains would likely present themselves.
 
The challenge for NetApp customers will be getting their data into a configuration that supports compression due to the 64-bit aggregate requirement, lack of an easy and non-disruptive LUN migration feature (DataMotion appears to only support iSCSI and NFS and requires several additional licenses), and no way to convert an aggregate from 32-bit to 64-bit.  Once compression has been enabled, if there is truly no way to disable it, any resulting performance impact will be very difficult to rectify.
 
On the other hand, any EMC customer with current maintenance can upgrade their NS or CX4 array to newer versions of DART or FLARE, and compression can be enabled on any existing data after the fact.  If performance becomes an issue for a particular dataset once compressed, the data can be uncompressed later.  Both operations are completely non-disruptive and run in the background.  While block compression only works on LUNs in a virtual pool, as opposed to a traditional RAID group, enabling compression on a normal LUN will automatically migrate the LUN into a virtual pool, perform zero-page reclaim, followed by compression, and the entire process is completely non-disruptive to the application.  Oh, and compressed data can still be tiered with FASTVP across SSD, FC, and SATA disk and/or benefit from up to 2TB of FASTCache.
 
I admit that there is a place for deduplication as well as compression in reducing the footprint of customer data.  However, based on what I’ve seen in my career as an IT professional, and with my customers in my current role at EMC, there are more use cases for compression than there are for deduplication when it comes to primary data, whether SAN or NAS.  Either way, if I was using a new technology for the first time on a particular data set, whether compression or deduplication, I would definitely want a backout plan in case the drawbacks outweight the benefits.